The modified Tersoff potential1)
is available when potfit is compiled with the tersoffmod
flag, which also implies
the apot
flag for analytic potentials.
The total potential energy is defined as
$$E_{\text{total}}= \frac{1}{2}\sum_{i,j}f_c(r_{ij})\left(A_{ij}e^{-\lambda_{ij}r_{ij}}+b_{ij}B_{ij} e^{-\mu_{ij}r_{ij}}\right)$$
where
$$b_{ij} = \left(1+\zeta_{ij}^{\eta}\right)^{-\delta},$$
$$\zeta_{ij} = \sum_{k\neq i,j}f_c(r_{ik})g(\theta_{ijk})\exp[\alpha(r_{ij}-r_{ik})^\beta]$$
and
$$ g(\theta_{ijk}) = c_1 + g_o(\theta)g_a(\theta)$$
$$g_o(\theta) = \frac{c_2(h-\cos\theta)^2}{c_3+(h-\cos\theta)^2}$$
$$g_a(\theta) = 1 + c_4\exp[-c_5(h-\cos\theta)^2].$$
The cutoff function $f_c$ is given as
$$ f_c(r_{ij}) = \begin{cases} 1 & r_{ij} \le R_1 \\ \frac{1}{2} + \frac{9}{16}\cos\left(\frac{\pi(r_{ij}-R_1)}{R_2-R_1}\right)-\frac{1}{16} \cos\left(\frac{3\pi(r_{ij}-R_1)}{R_2-R_1}\right) & R_1 < r_{ij} < R_2 \\ 0 & R_2 \le r_{ij} \end{cases}.$$
To defined a modified Tersoff potential in potfit, there is the special tersoff_mod_pot
function
which requires 16 parameters.
While basically systems with more than one atom type can be described using modified Tersoff potentials, this is completely untested. A system containing $N$ atom types requires $N(N+1)/2$ potential functions.
# atom types | tersoff_mod_pot |
---|---|
$N$ | $N(N-1)/2$ |
1 | 1 |
2 | 3 |
3 | 6 |
4 | 10 |
The potential table is assumed to be symmetric, i.e. the potential for the atom types 1-0 is the same as the potential 0-1.
The order of the potentials in the potential file for $N$ atom types is:
$\Phi_{00}, \ldots, \Phi_{0N}, \Phi_{11}, \ldots, \Phi_{1N}, \ldots, \Phi_{NN}$
An analytic IMD potential which can be used with the tersoffmod2
option of IMD is written to *.imd.tersoffmod.pot
.
This file, however, may not be used as a potential file for IMD. Instead, its contents need to be copied
INTO the IMD parameter file.
The potential can also be written in LAMMPS format. The name of the output file is *.lammps.tersoffmod
.