This page provides a list of references to algorithms used in potfit:
Ercolessi, F. and Adams, J. B.: Interatomic Potentials from First-Principles Calculations: the Force-Matching Method. Europhys. Lett., 26 (8), 583–588, 1994. Link
Powell, M. J. D.: A method for minimizing a sum of squares of non-linear functions without calculating derivatives. Comp. J., 7 (4),303–307, 1965. Link
Kirkpatrick, S., Gelatt, C. D., and Vecci, M. P.: Optimization by simulated annealing. Science, 220 (4598), 671–680, 1983. Link
Corana, A., Marchesi, M., Martini, C., and Ridella, S.: Minimizing Multimodal Functions of Continuous Variables with the “Simulated Annealing” Algorithm. ACM Trans. Math. Soft., 13 (3), 262–280, 1987. Link
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E.: Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 21, 1087–1092, 1953. Link
Dekkers, A. and Aarts, E.: Global optimization and simulated annealing. Mathematical Programming, 50, 367-393, 1991. Link
Storn R., Price K.: Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, 11, 341-359, 1997. Link
Zaharie, D.: Influence of crossover on the behavior of Differential Evolution Algorithms. Applied Soft Computing, 9, 1126-1138, 2009. Link
Chakraborty, U.: Advances in Differential Evolution. (Springer, Heidelberg 2008) Link
Allen, M. P. and Tildesley, D. J.: Computer Simulation of Liquids. Oxford Science Publications (Clarendon Pr., Oxford, 1987) Link
Daw, M. S. and Baskes, M. I.: Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Phys. Rev. Lett., 50 (17), 1285–1288, 1983. Link
Finnis, M. W. and Sinclair, J. E.: A simple empirical n-body potential for transition metals. Phil. Mag. A, 50 (1), 45–55, 1984. Link
Ercolessi, F., Parrinello, M., and Tosatti, E.: Simulation of gold in the glue model. Phil. Mag. A, 58 (1), 213–226, 1988. Link
Daw, M. S., Foiles, S. M., and Baskes, M. I.: The embedded-atom method: a review of theory and applications. Mater. Sci. Rep., 9 (7–8), 251–310, 1993. Link
Baskes, M. I.: Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon. Phys. Rev. Lett., 59 (23), 2666-2669, 1987. Link
Baskes, M. I., Nelson J. S., Wright A. F.: Semiempirical modified embedded-atom potentials for silicon and germanium. Phys. Rev. B, 40 (9), 6085-6100, 1989. Link
Lenosky T. J., Sadigh B., Alonso E., Bulatov V. V., Diaz de la Rubia T., Kim J., Voter A. F., Kress J. D.: Highly optimized empirical potential model of silicon . Modeling Simul. Mater. Sci. Eng., 8 (6), 825, 2000. Link
Mishin, Y., Mehl, M. J., and Papaconstantopoulos, D. A.: Phase stability in the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations. Acta Mater., 53 (15), 4029–4041, 2005. Link
Wolf, D., Keblinski, P., Phillpot S. R., and Eggenbrecht, J.: Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r-1 summation. J. Chem. Phys., 110, 8254, 1999. Link
Tangney, P., and Scandolo, S.: An ab initio parametrized interatomic force field for silica. J. Chem. Phys., 117, 8898, 2002. Link
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes in C: The Art of Scientific Computing (Academic Press, Cambridge, 1992), 2 edition Link